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This paper considers the circle map at the special point: the one at which there 
is a trajectory with a golden mean winding number and at which the map just 
fails to be invertable at one point on the circle. The invariant density of this tra- 
jectory has fractat properties. Previous work has suggested that the global 
behavior of this fractal can be effectively analyzed using a kind of partition 
function formalism to generate an f versus c~ curve. In this paper the partition 
function is obtained by using a renormalization group approach. 
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1. I N T R O D U C T I O N  

Severa l  recent  p a p e r s  (1'2) h a v e  sugges ted  tha t  the g l o b a l  p rope r t i e s  of  frac- 

tal sets can  be a n a l y z e d  via  a p a r t i t i o n  f u n c t i o n  a p p r o a c h .  Specif ical ly,  the  

p roper t i e s  of  the cr i t ica l  c ircle  m a p ,  de f ined  via  

Oj +~ = f (Of l  = 0 s + f2 - (sin 27zOs)/2~z (1.1) 

have  been  a n a l y z e d  in this m a n n e r .  T h e  p a r t i c u l a r  case  c o n s i d e r e d  m o s t  

fully ~2~ is the  one  in wh ich  the  w i n d i n g  n u m b e r  

l im Os - 00 = co(~2) (1.2) 
j~oo  j 

takes  on  a va lue  e q u a l  to the  " g o l d e n  m e a n "  

co = ( x / 5 -  1)/2 = - g  (1.3) 
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396 Kadanoff  

For this case, the trajectory given by (1.l) has an invriant density on the 
circle, ~bj= 0J (rood 1), with highly nontrivial and apparently universal 
topological properties. 

The physical nature of these properties is simply described. Consider 
any very long trajectory 0j, j = 0 ,  1, 2 ..... On the circle, the trajectory 
elements have a simple and orderly set of return properties, which can be 
described by the Fibonacci numbers, Fn. These obey 

Fo=F1 = 1 
(1.4) 

F n + I = F ~ + F .  1 

For high n, 0j and Oj+Fo lie very close to one another on the circle. Thus, if 
we define 

Un,j~--Oj+Fn--Oj--fn l (1.5) 

we can notice that as n goes to infinity, un,j goes to zero for all j. The 
topological properties of the trajectory are then defined by giving the dis- 
tribution of values of unj for fixed n as j is varied. The range of variation of 
unj with j is very large. In fact, in [unjI has a range in j which varies 
linearly in n. To describe the statistical properties of un;j, we introduce 

F~(r) = { ]unj]-~) (1.6) 

In (1.6) the average is over all j, i.e., all points in the trajectory. 
In Ref. 1, the dependence of Fn upon n was analyzed and we saw that 

for large n 

In F~(z) 
lim - -  - [ln I gl )(1 - q ( z ) ]  (1.7) 

where q(r) is independent of n and is the essential quantity needed to 
describe the properties of the attractor. 

The purpose of the present paper is to derive (1.7) and a set of renor- 
malization equations appropriate for calculating q(z). 

In one sense, this derivation should be simple and straightforward. 
Consider the fractal objects constructed by considering not the entire set of 
0is but only the subset defined by insisting that the value of 0j on the circle 
lie in some small range [-~min, @max]" For ~min and ~max near zero, there is a 
renormalization group calculation which effectively describes this 
subset. (3'4) Hence the contribution of this region of 0 / to  F,(z) might well 
be easily expressed by standard renormalization arguments. On the other 
hand, the mapping f (0)  takes any region of the circle into any other. Hence 
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the fractal is in some sense homogeneous. It is fully determined by, and 
essentially consists of, its small ~b behavior. 

The rest of this paper is simply the working out of these ideas. The 
next section elaborates the well-known small ~b scaling properties and ends 
with an expression for the relation between uj,~ in different regions of the 
lattice. The third section describes a renormalization group theory based 
upon these scaling properties. The fourth gives results. 

2. SCALING A N D  GLOBAL PROPERTIES OF THE CIRCLE M A P  

A. Def in i t ions of the Basic Quant i t ies  

The algebraic properties of the golden mean trajectory are rooted in 
the properties of Fibonacci numbers and of the golden mean itself/s) Just 
as the Fibonacci numbers obey the recursion relation (1.4) so the golden 
mean, - g, obeys 

g~+l=gn+gn 1 (2.1) 

and the two are related by 

gFn = -Fn_l  + gn (2.2) 

High iterates of the original mapping function (1.1) may be defined recur- 
sivety by giving a quantity involving F,, iterations by 

f n + l  = fn ~ fn 1 (2.3) 

with the initial conditions 

fo(O)=O-~ 
(2.4) 

)1(0) = f ( 0 )  

The periodicity condition f ( O - 1 ) =  f (O)-1 ,  then ensures that the entire 
set of fn forms a set of functions which commutes under the recursion 
operation 

g ~  fm = fm~ f~ (2.5) 

The basic quantity un.j is then given by 

Un,j = f n - t - l ( 0 j ) -  Oj (2.6) 

The value of the bare winding number, Q, is chosen to get the actual 
winding number to be the golden mean and thereby ensure that un,/goes to 
zero as n ~ Go. 
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The properties of the orbit 0j may be described by giving a conjugacy 
function (6) O(t) which obeys 

f [O( t ) ]  = O(t - g) (2.7a) 

and the periodicity condition 

O(t - 1 ) = O(t) - 1 (2.7b) 

Here O(t) is continuous but nowhere differentiable. Equations (2.3) and 
(2.4) may be combined with (2.7) to define the effect of any fn upon O(t), 
namely 

f ~ [ O ( t ) ] = O ( t -  g~) (2.8) 

For any initial starting point 00 = O(to) the subsequent 0 values obey 0J = 
O ( t o - j g )  and the subsequent t values are tj = t o - j g .  When these are shifted 
by integers to lie in the interval (0, 1 ] the shifted t values are uniformly dis- 
tributed over the interval. Hence the basic generating function, Fn(t) can be 
written as 

i t  1 Fn(r) = dt (2.9) 
_g2 I f ,+ lE0( t ) ]  - o ( t ) l  ~ 

In our later work, it will be important for us to know the positions of 
the singularities offn(0). These singularities are zeroes in the derivatives of 
dfn/dO. Since fo(0) has a singularity at 0 = 0, each and eve ry f ,  for n/> 1 will 
have such a singularity at 0(0). Define the zero of the conjugacy function 
by choosing 0 (0 )=  0. From the recursion formula it follows that fn(O) will 
have singularities at all the points 0 = O(jg), j = 0, 1, 2 ..... F~ _ 1 - 1. When 
these singularities are expressed in the interval (_1 ,  �89 we find that the 
singularities nearest to zero are at 

0 = 0 ;  O=O(gn-2) ,  O=O(g  n-3)  (2.10) 

for n~>3. 
Conversely, we can consider the inverse function hn(O) which obeys 

o r  

h.Ef.(0)] =0 

h.[O(t)]  = O(t + g~) (2.11) 

Since hn(O) has a derivative which obeys 

dh.(O) 1 
- -  - ( 2 . 1 2 )  

dO (df,(x)/dx)lx=h,(o) 
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hn(O) has no singularities in the range of 0 values given by O(t) with 

- 1 < t / g  ~ < _g-1  (2.13) 

B. The Basic Theorem 

We are now in a position to state our basic theorem. Define the quan- 
tity in the denominator of (2.9) to be 

u,(t) = O( t -  g"~ ~ ) -  O(t) (2.!4) 

Notice that this can be rewritten as 

u,(t) = f m [ O ( t -  g" ~' + gm)] -- f , ,[O(t+ g~)]  (2.15) 

let 
n>>m>> 1 (2.16) 

Since n is so large the two arguments of the fins in (2.15) differ by very 
little. Just as long as we stay away from the singularities of fro it is possible 
to expand in their difference and find 

un(t) = f'~[O(t + gin)] U,(t + gin) 

or equivalently 

u.(t + gm) = u.(t) h'~[O(t)] (2.17) 

whenever t lies in a range bounded away from the singularities of (2.13), 
for example when 

- 1 < t/g m < _g-1  (2.18) 

C. Scaling Behavior 

All of the functions in question have a particularly simple behavior in 
the limit n --+ o% t -+ 0, 0 --+ 0. In this scaling limit, there is a natural scale 
for t, gn, and a natural scale fo r fn  and un, cd'. Here e =  -1.28857... is the 
scale factor defined in Refs. 3 and 4. Define, using the logic of Feigenbaum's 
original renormalization work (7) 

a"f,(xo~ -n) = L ( x )  

ce"0(sg") = O,(s) (2.19) 

~"u . ( sg  ~) = ~ . (s )  
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Each of the quantities on the right-hand-side of (2.19) achieves a non- 
trivial limit as n--+ oo. Call these limit functions jT, ~, ft. The equations 
above imply relations for these new functions. We now simply list the 
relations which will be useful in what follows: (2.3) implies recursion 
relations o f f . .  Define/Tn and h to be, respectively, the inverses of L and 
They obey 

~, + l(x) = ~2hn -1 [~ -l~n(X/et)] (2.20a) 

= ~ [~ _ 1(x/~2)] (2.20b) 

while 

h(x) = ~2/7[-a 1/7(x/~)] (2.21a) 

= ~'[~/7(x/~2)] (2.21b) 

Equation (2.19) directly implies a scaling law for the conjugacy function r 

et"O(s) = O(s/g" ) (2.22) 

for all integral values of n. Equation (2.7a) then implies 

~[0(s)]  = O(s + 1) (2.23a) 

and also the inverse relation 

f [~ (s ) ]  = 0"(s - 1) (2.23b) 

The scaling-limit displacement function fi(s) is defined via (2.14) to give 

~ ( s )  = O(s - g )  - O(s )  

= ~ 1)7[~0"(s)] - 0"(s) (2.24) 

Finally, the crucial statement (2.17) becomes 

~(s + g n) = ~(s) h'[  O(sg~) ] (2.25) 

for n >> 1. According to (2.13), h(0) is nonsingular if 0 lies in the range 

O ( - g  1 ) > 0 > 0 ( - 1 )  (2.26) 

so that (2.25) is acceptable whenever s lies in the range 

- g - l > s g n >  - 1  (2.27) 
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3. THE RENORMALIZATION GROUP 

A. "Exact" Statements about the Generating Function 

In this section, we outline some of  the exact statements of  the n ---, 
limit of F~(v). We restrict ourselves here to results which can be obtained 
without  using any renormalizat ion g roup  results. We write 

g 1 
F~( , )  = dt 

-g= lu~(g)l ~ 

= f  g d t  g 1+1 ) 
- ~  IO(t-  - 0 ( t ) l  ~ 

=An(~)  ]g] nEq(~)-ll (3.1) 

Here An(~) varies with less than exponential  rapidity in n as n ~ oo. Wha t  
can we say about  q(~)? 

At z = 0, the integral is trivial and we find at once that  

q(0) = 1 (3.2) 

At v = - 1 ,  the integral reduces to 
~g gn+l 

= -- d tO( t )  ( - 1 )  ~+~ 
g2 g 

f g_gn+l 
= dt [ O ( t ) - O ( t -  1 ) ] ( -  1 )  ~ --g 

Since O( t - 1 ) = O( t ) - 1, we find 

F n ( - - 1 ) =  ]gl n+l 

and hence obtain  another  value of q 

q ( - 1 ) = 0  (3.3) 

As z ~  - ~ ,  the integrals in (3.1) pick out  the very largest values of 
u,(t) .  These maxima occur near t =  0 where [un(t)t ~ ]~1-= and occur  over 
a range t tl ~ I gin. This estimate gives 

Fn(v) ~ I~1 ~ Igl n 
o r  

q(r)  ~ - - r 0 n  I~l/ln [gl) (3.4) 
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as ~ --* -oe .  Correspondingly as ~ --* o% the integral picks out the smallest 
values of un(t). Since 

u.(t  - g) = f [ O ( t -  g"+ 1 ) ]  - -  f [O( t ) ]  

and since f (O) has a cubic inflection point at 0 = 0, we find that 

lUn(t-- g)] ~ I~1--3. for Itg "1 ~ 1 

In this way we obtain the large z estimate 

q ( z ) ~  -~(3  In I~[/ln Igl) as ~ --, oe (3.5) 

B. Formulation 

Define the basic quantity in the renormalization analysis 

Fn.m(Z, [ O ])= (-1)m f ;g++12 dt tp[O(g-mt) ,U.(t),~ (3.6) 

Fn,m is thus a functional of the function 0(0). We take this function to be 
smooth and nonsingular in the interval 

O(g) < 0 < O(g 2) (3.7) 

The quantity which we really wish to know is 

F.(r )  =- F.,o(~, [1 ] )  (3.8) 

where [1]  stands for the function 0(0) which is always unity 

In the scaling limit 

Fn, m reduces to 

1(0)= 1 

n>>m>> 1 (3.9) 

r.,m(~, [ 0 ] ) =  I~1 "~ Igl"~.  re(z, [ 0 ] )  

where the scaling function is 

f ~ "+1 ~ , [ ~ (g ' s ) ]  
~.(~, [~,])  = ( -  1)- ] as 

_~-.+= IzT(s)l ~ 

(3.1o) 

(3.11) 
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Our analysis involves splitting the integral into two parts 

~ _ g - n + 3  

I I = ( - 1 ) ' J  g .+2 

g-n+l  

I2= ( -  1)" ~ g-.+3 

ds O [O'(g~s)] 

ds O[O(g"s)] 

(3.12) 

and then showing that as n --* 0% I1, and/2 can be, respectively, written as 

I1 = ? . _ l ( r ,  [ tp , ] )  
(3.13) 

where 01 and 02 are functional of 0 simply related to the original function 
0. This relationship is expressed by writing 

0 j=  Gj[O] for j =  1, 2 (3.14) 

The functional relationship turns out to be very simple indeed. First, notice 
that I1 may be written as 

(n - l )+ l  

Ii ( - I ) " -  ~-g = 1 ds 
J_ ~-,o ~,~ I~(s)l ~ 

Therefore the new function is 

01(0) = 0(~-  10) (3.15a) 

or equivalently expressed as 

~i[~]=0o~ - I  (3.15b) 

The upper and lower limits in (3.16) are, respectively, _g -n+3  and 
_g-n+4.  Equation (2.25) enables us to replace ~(s+ g2-n) for large n by 
~(s) h'[O(gn-2s)]. Equations (2.19) and (2.23b) imply 

O ( g " s + g 2 ) = ~  20"(gn Zs+l)  

= ~-2/Tz[0(gn- 2s) ] 

where ~-1 is the function ~-1(0)= 0/e. 
The calculation of G2 is only slightly more complex. Look at the 

second integral in (3.12). Whenever s appears, write instead s = s + g-n +2 
Then the integral becomes 

_g ,+~_g ,+2 0[0"(g~s+ g2)] r I2=(- -1)nJ_g  ,+3_g ,+2ds ] f i ( s+g2_ , ) l ,  (3.16) 



404 Kadanoff 

Hence, the integral (3.15) may be rewritten as 

g-(n 2)+1 0 = (~(g2-ns) _ ds 02(0) (3.17) I 2 = ( - 1 )  (n 

Hence we obtain the second part of (3.13) with 

r = r [/~,(0)] ~ (3.18a) 

In functional language (3.18a) can be written as 

0 =6210] 

r (3.18b) 
a 2 [ , / , ]  = 

Our renormalization group equation can thus be stated as 

~n( T, r l / l ] )=] ln I{ '~,(GI[O-I)}~-] ln_2{T,(G2[O])} (3.19) 

where the functionals G1 and G2 are defined, respectively, by (3.15) and 
(3.18). The full specification of (3.19) must include a statement of the 
domain of definition of r Equation (3.11) states that the domain of r is 

0( - g2) ~< 0 ~< 0( - g) (3.20a) 

Then in G I [ 0 ] ( 0 ) =  ~b(0/cQ and the corresponding domain of ~ is 

0( - g3)/> 0/> 0( - g2) (3.20b) 

while G2[ r  the domain of 0 is 

0 ( -  g3) ~. 0 ~ 0( -- g)  (3.20C) 

The analysis which led to (3.19) is acceptable within a range of 0, which 
does not include singularities of ~(0). According to (2.27), this range is con- 
siderably wider than the range (3.20a). It is 

O ( - 1 ) < O < O ( - g - ' )  (3.21) 

Hence we are allowed to apply (3.19) to the class of 0(0) defined and non- 
singular in the interval (3.20a). 
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C. Matrix Equations 

To analyze (3.19), visualize expanding the appropriate functions of 0 
in some set of basis functions ~Pk(0), which are complete and nonsingular in 
the range (3.20a). To analyze the first term we write 

0(0)= ~ 0k0k(0) (3.22a) 
k - 0  

To analyze the second term write 

Ok(O/c~) = ~ AkYOj(O) (3.22b) 
J 

The third term involves the expansion 

Ok(c~-2h(O)) _ ~, BkJOj(O) (3.22c) 
[h" (o)y  j 

Then (3.19) may be recast in matrix form using, as a set of expansion coef- 
ficients 

~/.,k(r) = ;J.(z, [Ok]) (3.23) 

The equation reads 

ok[(~k/Tn,j  --  AkJyn l , j  - -  B k / ~ ) n -  2, j ]  ---- 0 
kj 

Since the O h are completely arbitrary, the coefficient of each O h must be 
zero. Hence we see 

)Jn,k ---- S AkJTn - 1,j q'- BkJ'ln - 2 , j  (3.24) 
J 

A neater form is obtained if we define 

7;,,~ = ~ BkJT,, w 
J 

Then (3.24) can be written as an expression for a two-component vector as 

(7~) = H ( ~ ) ( T n - ~ 7 "  \7'~ l /  (3.25) 

where 

HkJ('c) = ] Bkj(v )AK j c509 (3.26) 
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Notice that Hk j is a known matrix, once ~ and h(0) are known. For exam- 
ple, if 0h(0)= O h, then 

Ak j=c~ k6kJ (3.27a) 

and Bk j is defined by 

[(1/~2) h(0)]k = ~ BkJO j (3.27b) 
[B'(0)y j 

It may well be that a power series like (3.27b) does not really converge in 
the entire region of 0. Then one should take all sums to have a finite num- 
ber of terms and interpret them as fits to the functions in question. 

The next step is to interpret (3.25) as an eigenvalue equation. Assume 
that for large n and almost any 0 

and, in particular 

~,(~, [0])--,,~"7(r, [0] )  (3.28) 

7n,k(r) ~ 2nTk(z) (3.29) 

Then (3.25) becomes the eigenvalue statement 

7' 7' (3.30) 

If 2(r) is the largest eigenvalue of (3.30), one can return to (3.1) and 
(3.10) and thereby find 

In I~1 + in 2(r) 
q(z) = (3.31) 

- I n  (gf 

In this way, we have constructed a renormalization group calculation of 
q(~). 

D. Functional Equations 

Under most circumstances one can equally well find eigenvalues from 
the right- or left-hand form of eigenvalue equations. Thus it is plausible 
that one can also find 2(r) from the alternative eigenvalue equation 

0k,_.~0'k2(r) = Z ~ H j  ~c(z) (3.32) 
J 



Renormal izat ion Group Analysis of the Global Properties 407 

Take (3.22), multiply on the right by 0k(0), and sum over 0. Define 0(0) 
by (3.22a), and make use of (3.22b) and (3.22c). The resulting functional 
equation for 0 is 

.~0(0) = 0 ( 0 / . )  + E0(B(0)/=2]/Eh"(0)]  ~ .~ (3.33) 

Then 2 is the largest eigenvalue of (3.33) defined by the condition that 0(0) 
should be nonsingular in the range (3.20a). 

Equation (3.33) is useful for making analytical progress. The alter- 
native form (3.30) is more useful for numerical work. 

4. RESULTS 

A. Exact S ta tements  

The exact statements (3.2)-(3.4) imply via (3.31) that 2(r) obeys 

; . ( - ~ ) =  1 

~( - l )  = Ic~l 

2(0) = tg1-1 

,~(v) ~ Ic~l ;~ as 

To derive (4.1c) notice that (3.33) has, 
0(0) = const and, hence, 2 obeys 

Z" --~ OO 

a t  

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

r = 0, eigenfunctions 

2 2 = 2 + 1  

The larger solution is (4.1c). 
To derive (4.1a), notice that in the range O(-g2)<O<O(-g),  ft' 

obeys 0 < ~'(0) < 1. We therefore guess a solution to (3.33) which is, once 
again, essentially constant. One possible solution, the one which has the 
largest eigenvalue, is 2 = 1. In this solution, the second term on the right in 
(3.33) is a small correction. 

To get the ~ --* oe solution neglect the first term on the right in (3.33). 
The equation then reads 

220(0) = 0 1 l-5 h'(0)]/[/~'(0) ] ~ (4.2) 

Equation (2.21a) implies the two statements 

~ ( ~ o )  = ~ 2 / 7 E ~ - ~ ( o ) - I  

h'(~O) = ~'(0) h" [c , -  I~(0)]  
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A formal  solut ion to (4.2) m a y  be derived as 

[h'(~o)]~ 
4 , ( 0 )  = 

[h'(c~0)] ~ (4.3) 

But we know that  as 0 ~ O, ~ ( 0 )  = A + BO 3. Xence, if we set 0 = 0( - 1 ) - x 
for x <  1, we have, ~ ( x ) , - ~ C x  1/3. Hence,  if the solut ion (4.3) is to be non-  
singular near  0 = O( - g), we mus t  have p = -2~ .  Then  

)~ = Ic~[ 2~ (4.4) 

The first te rm on the r ight -hand side of (3.33) is relatively negligible in this 
situation. Thus  we have checked (4.1d). 

I do not  see how to derive (4.1b) f rom (3.33). 

B. Lowest -Order  Resul t  

In the very lowest -order  analysis, one can replace h"(0) in (3.22c) by a 
constant  h ' ( 0 ) =  a -  1. If  we then choose the lowest-order  expans ion  funct ion 
to be ~bo(0)= 1, (3.22b) and (3.22c) give 

A o j = (~ o ./ 
(4.5) 

B o  j = (~oJa z 

The k = 0, j = 0 subsector  of H thus decouples. In  this subsector  we have 
f rom (3.26) 

which has at its largest  eigenvalue 

2 = (1 + x / i - +  4a~)/2 (4.7) 

If a > l ,  (4.1a) also follows immediate ly  f rom the lowest -order  
app rox ima t ion  (4.7). F r o m  (4.1d), a = e4 and then (4.1b) implies 

Is[ = (1 + x/1 + 4~ -4) /2  

which has as its solution e = -1 .2852  .... This compares  well with the exact  
result e = -1 .2886  .... In fact, the app rox ima t ion  (4.7) is always accurate  to 
within a few percent.  This lowest-order  result can give us some confidence 
in the overall  correctness of  our  approach .  
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C. Numerical Results 

To obtain numerical results one must first find h(0). Using exactly the 
same method as outlined in Ref. 4, one can find f (0y)= ~y, t h e f v a l u e  at the 
points 0 j=  ( j / M )  1/3 where j = 0 ,  1, 2,..., M. As in the earlier reference we 
solved for ~ at M =  11. Then this 12-point fit for the derivative d~ was 
obtained by using a 12-term polynomial fit in 0 ] and differentiating the 
polynomial term by term. 

Next a 12-point fit to ]7 was obtained by writing 0j = h(~) =/Tj and a 
similar fit was obtained to 

[ dh(x) /dx]x= fj = 1~dry (4.8) 

An approximate c~ value was obtained as ~ = h'M ~. 
As a result, we could start from good approximations for h'j at the 

arguments ~.. The lowest argument was Yo = 0. The highest was fM = t. 
Using the theory of Ref. 4, these could be interpreted, respectively, as 

70 = 0 ( o )  = 0 

fM=O(--g)= 1 
(4.9) 

Hence, the highest j value lies precisely at the right-hand end of the fitting 
interval (3.20a). The lowest j value is lower than the lower end of the inter- 
val. 

The first three j values lie outside of the required interval. Hence, these 
values of ~'j were discarded and replaced by the exact value of h'(0) at the 
left-hand end 

03=0(__g2)=0~ 2 

h'3 =/~(03) = 0( - g) = c~ -~ (4.10) 

( ~  : "  

Now we have 10 points in/~(0) and dB/dO in the required interval. 
These functions were then fit at N equally spaced theta values by inter- 

polation in a 10-term polynomial expansion. Then (3.23) were used to 
obtain N x  N matrices Ak j and BkJ(r). Finally, 2(r) was obtained as the 
largest eigenvalue of H(r).  

To check this work, use the exact statements of Section 3A or 4A. 
Table I summarizes this comparison with exact statements. The first row is 
the "exact" data, in error only because of the error in the determination of 
c~ used in columns 2 and 5. The errors are as large as 0. l for N = 2 or 3 and 
fall to 10 4 or l0 5 at N =  8 and 11. 
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Table I. 

Kadanoff  

Comparison Between Exact Results and Numerical  
Calculations Employing N x N Matr ices 

z-->oo v = 0  r = - I  z ~ - o 9  
q(z)/r q(r) q(z) q(z)/z 

Exact 1.5806 1 0 0.52687 
N = 2  1.5806 1 0.10412 0.53058 
N = 3  1.6821 1 0.00806 0.52737 
N = 4  1.7481 1 0.00414 0.52654 
N =  5 1.5805 1 0.00064 0.52679 
N = 8  1.5805 1 0.00005 0.52691 
N = l l  1.5805 1 0.00001 0.52692 
N =  14 1.5811 1 0.00001 0.52692 

I consider this table to be a substantial argument that the method is 
working satisfactorily. 

Using the higher-order results I estimate that the errors in the lowest- 
order approximation of Section 4B are at the 1 or 2 % level. Hence, for 
most practical purposes, this lowest-order approximation will give 
reasonable results. 
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